skip to main content


Search for: All records

Creators/Authors contains: "Yue, Y.-L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Magnetic fields have an important role in the evolution of interstellar medium and star formation 1,2 . As the only direct probe of interstellar field strength, credible Zeeman measurements remain sparse owing to the lack of suitable Zeeman probes, particularly for cold, molecular gas 3 . Here we report the detection of a magnetic field of +3.8 ± 0.3 microgauss through the H  I narrow self-absorption (HINSA) 4,5 towards L1544 6,7 —a well-studied prototypical prestellar core in an early transition between starless and protostellar phases 8–10 characterized by a high central number density 11 and a low central temperature 12 . A combined analysis of the Zeeman measurements of quasar H  I absorption, H  I emission, OH emission and HINSA reveals a coherent magnetic field from the atomic cold neutral medium (CNM) to the molecular envelope. The molecular envelope traced by the HINSA is found to be magnetically supercritical, with a field strength comparable to that of the surrounding diffuse, magnetically subcritical CNM despite a large increase in density. The reduction of the magnetic flux relative to the mass, which is necessary for star formation, thus seems to have already happened during the transition from the diffuse CNM to the molecular gas traced by the HINSA. This is earlier than envisioned in the classical picture where magnetically supercritical cores capable of collapsing into stars form out of magnetically subcritical envelopes 13,14 . 
    more » « less
  2. Abstract The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium 1 , which is assumed to dominate the total extragalactic dispersion. Although the host-galaxy contributions to the dispersion measure appear to be small for most FRBs 2 , in at least one case there is evidence for an extreme magneto-ionic local environment 3,4 and a compact persistent radio source 5 . Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific-star-formation rate at a redshift of 0.241 ± 0.001. The estimated host-galaxy dispersion measure of approximately $${903}_{-111}^{+72}$$ 903 − 111 + 72 parsecs per cubic centimetre, which is nearly an order of magnitude higher than the average of FRB host galaxies 2,6 , far exceeds the dispersion-measure contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host-galaxy identifications. 
    more » « less
  3. ABSTRACT

    We report the phase-connected timing ephemeris, polarization pulse profiles, Faraday rotation measurements, and Rotating-Vector-Model (RVM) fitting results of 12 millisecond pulsars (MSPs) discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in the Commensal Radio Astronomy FAST survey (CRAFTS). The timing campaigns were carried out with FAST and Arecibo over 3 yr. 11 of the 12 pulsars are in neutron star–white dwarf binary systems, with orbital periods between 2.4 and 100 d. 10 of them have spin periods, companion masses, and orbital eccentricities that are consistent with the theoretical expectations for MSP–Helium white dwarf (He WD) systems. The last binary pulsar (PSR J1912−0952) has a significantly smaller spin frequency and a smaller companion mass, the latter could be caused by a low orbital inclination for the system. Its orbital period of 29 d is well within the range of orbital periods where some MSP–He WD systems have shown anomalous eccentricities, however, the eccentricity of PSR J1912−0952 is typical of what one finds for the remaining MSP–He WD systems.

     
    more » « less